博客
关于我
hdu 1788 Chinese remainder theorem again(gcd)
阅读量:389 次
发布时间:2019-03-05

本文共 902 字,大约阅读时间需要 3 分钟。

为了解决这个问题,我们需要找到一个最小的正整数 ( x ),它满足给定的同余条件。每个模数 ( M_i ) 大于 ( a ),并且 ( x ) 除以 ( M_i ) 余 ( M_i - a )。

方法思路

我们可以利用中国剩余定理的思想来解决这个问题。具体来说,我们需要找到一个数 ( x ),它满足以下条件:

  • ( x \equiv a \mod (M_i - a) ) 对于每个 ( i ) 来说。

为了找到这样的 ( x ),我们可以通过以下步骤:

  • 计算所有给定模数 ( M_i ) 的最小公倍数(LCM)。
  • 将这个最小公倍数减去 ( a ),得到最小的满足条件的数。
  • 这个方法的正确性基于以下观察:当模数 ( M_i ) 有多个时,计算它们的最小公倍数可以帮助我们找到一个数,它在所有模数下都满足特定的余数条件。

    解决代码

    #include 
    using namespace std;
    typedef long long ll;
    int main() {
    int I, a;
    while (scanf("%d%d", &I, &a) != EOF) {
    if (I == 0 && a == 0) break;
    ll ans = 1;
    for (int num; scanf("%lld", &num) && I-- > 0) {
    ans = (ans * num) / __gcd(ans, num);
    }
    printf("%lld\n", ans - a);
    }
    }

    代码解释

  • 输入处理:读取输入数据,直到遇到 ( I = 0 ) 且 ( a = 0 ) 的情况时停止。
  • 计算最小公倍数:初始化 ans 为 1,然后逐个读取每个模数 ( M_i ),并更新 ans 为当前 ans 和新模数的最小公倍数。
  • 计算结果:将 ans 减去 ( a ),得到满足条件的最小正整数 x,并输出结果。
  • 这种方法确保了我们能够高效地找到满足所有同余条件的最小数。

    转载地址:http://jlewz.baihongyu.com/

    你可能感兴趣的文章
    nginx 反向代理 转发请求时,有时好有时没反应,产生原因及解决
    查看>>
    Nginx 反向代理解决跨域问题
    查看>>
    Nginx 反向代理配置去除前缀
    查看>>
    nginx 后端获取真实ip
    查看>>
    Nginx 多端口配置和访问异常问题的排查与优化
    查看>>
    Nginx 如何代理转发传递真实 ip 地址?
    查看>>
    Nginx 学习总结(16)—— 动静分离、压缩、缓存、黑白名单、性能等内容温习
    查看>>
    Nginx 学习总结(17)—— 8 个免费开源 Nginx 管理系统,轻松管理 Nginx 站点配置
    查看>>
    Nginx 学习(一):Nginx 下载和启动
    查看>>
    nginx 常用指令配置总结
    查看>>
    Nginx 常用配置清单
    查看>>
    nginx 常用配置记录
    查看>>
    nginx 开启ssl模块 [emerg] the “ssl“ parameter requires ngx_http_ssl_module in /usr/local/nginx
    查看>>
    Nginx 我们必须知道的那些事
    查看>>
    Nginx 的 proxy_pass 使用简介
    查看>>
    Nginx 的配置文件中的 keepalive 介绍
    查看>>
    Nginx 结合 consul 实现动态负载均衡
    查看>>
    Nginx 负载均衡与权重配置解析
    查看>>
    Nginx 负载均衡详解
    查看>>
    nginx 配置 单页面应用的解决方案
    查看>>